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The stress transfer in single-fibre composites is studied experimentally by determining the 
critical fibre length to diameter ratio,/e/d, in carbon fibre-epoxy resin or poly (ethylene vinyl 
acetate) systems. Our results and a great number of others available in the literature are com- 
pared with the predictions given, on the one hand, by the analytical approach by Cox and, on 
the other hand, by the theoretical study using finite element technique by Termonia. First, the 
influence of the fibre-matrix adhesion is analysed and it is observed, in agreement with Ter- 
monia, that Ic/d strongly decreases when the bonding efficiency between the two components 
is increased. Secondly, assuming a perfect fibre-matrix adhesion, it is shown that the critical 
fibre aspect ratio is proportional to the square root of the ratio of fibre to matrix elastic 
modulus, as predicted by Cox. However, two linear relationships are established: the first 
corresponds to the thermosetting and thermoplastic matrices, while the second corresponds to 
the elastomeric matrices. The difference between these two kinds of materials is attributed to 
the great difference in polymer chain mobility as shown by a study of the temperature depen- 
dence of/c/d, particularly in the glass transition temperature zone of the matrices. However, in 
the case of elastomeric materials, the existence of an interphase layer between the fibre and 
the matrix, having an elastic modulus close to that of the elastomer in its glassy state, can also 
explain this particular behaviour. 

1. I n t r o d u c t i o n  
There has been a rapid growth in the use of fibre- 
reinforced materials in engineering applications in the 
last few years, owing to their great versatility and high 
performance. These materials often consist of dis- 
continuous stiff fibres embedded in a soft matrix with 
the fibre axis generally oriented in the direction of the 
applied load. In any fibre-reinforced resin, the load 
working on the composite is transmitted to the fibre 
through the fibre-matrix interface. Consequently, the 
structure and the properties of the fibre-matrix inter- 
face play a major role in the mechanical and physical 
properties of composite materials. In particular, the 
fibre-matrix interfacial shear strength is one of the 
most important parameters in controlling the tough- 
ness and the strength of a composite material. Its 
value is particularly dependent on any modification 
(fibre surface treatment,  sizing, etc.) affecting the 
properties of the fibre-matrix interface. 

The problem of stress transfer from the matrix to 
the fibre, across the interface, has recently received 
considerable attention. The model system which 
has been mainly considered is that of a single fibre 
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embedded in a matrix under stress. The fragmentation 
test on single-fibre composite is suitable to measure 
directly the interfacial shear strength. A tensile load, 
applied to the specimen, is transmitted from the 
matrix to the fibre and, as originally described by 
Kelly and Tyson [1], the fibre should break into frag- 
ments until a limiting fragment size, defining a critical 
length lc, is reached. 

From a theoretical point of view, this system can be 
analysed by the classical shear lag theory, proposed by 
Cox [2], which permits analytical determination of the 
tensile stresses in the fibre and the shear stresses at the 
fibre-matrix interface in the case where both the fibre 
and the matrix are in the elastic state. The simple 
equations which resulted from this model are gener- 
ally very useful for numerous applications. Unfortu- 
nately, Cox's analysis neglects the adhesion across the 
end faces of the fibres and fails to take into account 
local stress concentration effects near fibre ends. The 
importance of these assumptions has been demon- 
strated by finite element approaches [3]. In a recent 
paper, Termonia [4] has analysed theoretically the 
transfer of stress between the matrix and fibre in 
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single-fibre composite, using finite difference tech- 
nique. In particular, he showed that, at constant fibre 
diameter, the critical length is linearly related to the 
ratio of fibre to matrix modulus, in contradiction with 
Cox's model which predicts that, to a first approxi- 
mation, lc varies as the square root of  this ratio. 
Nevertheless, all these predictions, from Cox's model 
as well as from Termonia's analysis, are based on the 
assumption that a perfect bond exists between the 
fibre and the matrix. 

The aim of  the present paper is first to determine 
qualitatively the influence of fibre-matrix adhesion on 
the critical length and to compare this influence with 
the theoretical finite element analysis presented by 
Termonia [4]. Secondly, considering a perfect bond 
between the fibre and the matrix, from our results and 
numerous Others available in the literature, a general 
trend of variation of/o in relation with the ratio of fibre 
to matrix modulus is examined, in order to determine 
which theoretical analysis, Cox's or Termonia's, is the 
most accurate one to describe the stress transfer from 
the matrix to the fibre in a single-fibre composite, 
whatever the nature of the fibre and the matrix. 

The properties of resins which form the matrix 
are sensitive to temperature and it is conceivable 
that the critical length will be affected by temperature. 
Accordingly, in the last part of  this study, the tem- 
perature dependence of the critical length is studied 
for carbon fibre-epoxy and carbon fibre-poly (ethy- 
lene vinyl acetate) composites, more particularly in the 
glass-transition temperature zone of  the matrix. 

2. T h e o r y  
In 1952, Cox [2] presented a theory applying to the 
case where both the fibre and the matrix are in the 
elastic state. The following major assumptions were 
made: (i) the fibre is surrounded by a cylindrical 
matrix; (ii) the transfer of load from matrix to fibre 
depends upon the difference between the actual dis- 
placement at a point on the interface, at a distance x 
from the end of  the fibre, and the displacement that 
would be observed if the fibre were absent; (iii) a 
perfect bond exists between the fibre and the matrix; 
(iv) there is no load transfer through the ends of the 
fibre. 

Considering a fibre length 1 embedded in a matrix 
under a general strain, e, the following expressions for 
tensile stress, af, in the fibre and shear stress, z, along 
the fibre-matrix interface are then obtained 

cosh f(l/2 - x) ] 
O'f(X) = gfEf = ( E f -  Em)~S 1 - -  7 0 ~ - ~  172 

(1) 

~(x) d f a c ( E f -  E m ) s i n h / 3 ( l / 2 - x )  
= 4 E-m c o s h  fl/2 (2) 

where Er and Em are the elastic moduli of  the fibre and 
the matrix, respectively, ~f is the axial fibre strain, ao 
the uniform stress applied to the composite, d the fibre 
diameter and f a constant defined as 

2 [  E m 11/2 
/3 = ~ (1 + Vm)(Er - Em) in (2rm/d) (3) 
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Figure 1 Theoretical variations of tensile (a) and shear (z) stresses 
along a fibre for l > l~. 

with Vr~ the Poisson's coefficient of the matrix and r m 
the radius of  cylindrical matrix (or the separation 
between parallel fibres in a composite). 

The expressions for ar and z (Equations 1 and 2) 
give the usual longitudinal stress pattern (Fig. 1) 
which shows maximum fibre axial stress in the region 
of the midpoint of the fibre and maximum shear at the 
fibre ends [5]. This maximum shear strength, denoted 
~'max (Fig. 1), for a fibre with a length equal to its 
critical length, can be written 

df ( sinh flc/2 ) 
"['max = T cosh fl~/2 -- 1 O-r(() (4) 

where ar(lc) is the tensile strength of this fibre at a 
length l = lc. 

It must be noted that the critical length is approxi- 
mately equal to twice the distance between a fibre end 
(where ar = 0) and the point where af reaches the 
maximum possible value of stress in fibre, i.e. e Er, 
provided that the length l of the fibre is sufficient to 
obtain a variation of  stress as given by Equation 1 
having a maximum value of  s El. 

As stated by Galiotis et al. [6], for large values of l, 
Equation 1 can be simplified leading to the following 
form 

'~f/8m "~ 1 - exp ( - - f x )  - exp [ - f ( l  - x)] (5) 

if Ef >> Era. It can be observed that for positions well 
away from the fibre ends ef = era, while er decreases 
exponentially to zero as x tends towards zero. The 
ratio er/~m reaches the value of (1 - I/e) at x = 1/f 
or x = 1 - l/ft. Thus, Galiotis et al. [6] consider that 
the inverse of the constant/3 can be identified, to a first 
approximation, as being equivalent to half the critical 
length previously defined. Consequently, from Equation 
3 it is possible to write 

/~ !1 + Vm)(E f - -  E ~ ) i n  (6) 
d E~ 

and for Ef > E m  

l/2 

(7) 

In Equation 7, the term [ln (2rm/d)] 1/2 does lead to a 
logarithmic divergence when r m ~ o0. Nevertheless, 
in a single-fibre composite, rm is often taken equal to 



half the composite thickness considering that this 
value is in agreement with Cox's analysis. Fortunately, 
this term is a very slowly varying function, even for 
large values of  the ratio rm/d and, then, for a great 
number of fibre-matrix systems (considering also that 
the extreme values of (1 + Vm) 1/2 are equal to 1 and 
1.225), it can be assumed that, in practice 

lc k ( Er ~ ~n 

where k is approximately constant. The scatter on the 
value of  k will be discussed in Section 3. 

Equation 8 must be compared with the results 
obtained by Termonia [4] using a finite element analy- 
sis. In this work, it was found that 

lc 8 
- _~ k ' - -  (9) 
d Em 

in contradiction with Equation 8. 
It is also worth presenting another theoretical 

analysis given by Kelly and co-workers [1, 7] for the 
case of the matrix being in the plastic state. These 
authors have related the critical length, l~, to the inter- 
facial shear strength through a force balance equation 
around the embedded fibre. They assumed that the 
shear strength at the interface, r, is constant and equal 
to the shear yield strength of the matrix and obtained 
the following equation 

d 
: = ~ Gf (10) 

where o- r is the tensile strength of the fibre. This 
approach was analysed again by Di Benedetto and 
co-workers [8, 9] in a more general case. They found 
that 

d 
: = ~ af(lc) (11) 

which is similar to the equation of Kelly et al., but 
considers that ar(l~) is the tensile strength of the fibre 
at a gauge length equal to the critical length, l~. 

Recently, Simon and co-workers [10, 1l] have 
shown that : obtained by Equation 11 can be con- 
sidered as the mean shear strength at the interface, 
because it is equal to the mean value of the shear stress 
: (x)  previously determined by Cox (Equation 2) 
according to 

2 
: = 7 nl/S r ( x ) d x  (12) 

d t J  

3. Experimental procedure 
Two types of matrix were employed. 

(1) A thermosetting epoxy resin: D G E B A - D D S  
(Ciba-Geigy LY 556, hardener HT  976). After adding 
the hardener (26% wt/wt) to the resin at 130~ the 
mixture was stirred thoroughly for 15 min, defoamed 
in vacuum for 10min, then poured into a mould, 
cured at 130 ~ C for 3 h and post-cured at 180 ~ C for 3 h 
under a pressure of 1.5 MPa. Sheets of about 2 mm 
thickness were then obtained. 

(2) A thermoplastic resin :poly(ethylene-vinyl ace- 
tate) (EVA)(Elvax 150. Du Pont -- 33% vinyl acetate 

content) was.compression moulded (1.5MPa), to 
obtain 2ram thick sheets in a picture frame type 
mould at 160~ for 2 min and then quenched to room 
temperature. 

Tensile specimens according to ISO 1/2 standard 
were cut from the sheets in both cases. To determine 
the mechanical behaviour of both matrices, in particu- 
lar their elastic modulus Era, stress-strain curves were 
obtained on an Instron 1195 H tensile testing machine 
at a constant cross-head speed equal to 0.5 mm min-L 
The testing machine was equipped with an environ- 
mental chamber enabling temperatures to be varied 
for the epoxy resin from room temperature to I80~ 
and for EVA from - 6 0  to + 40 ~ C. 

The glass transition temperature, Tg, of the matrices 
was determined by differential scanning calorimetry 
(DSC) with a Mettler TA 3000 apparatus. The DSC 
spectra were recorded with an increasing temperature 
rate of 10 ~ C min-  ~. The values of Tg were found equal 
to 140 and - 36 ~ C for epoxy resin and EVA polymer, 
respectively. It was also observed that the degree of 
crystallinity of EVA was low, less than about 10%. 

The fraction of insoluble material (gel) present in 
the EVA polymer was determined by immersing about 
1 g EVA in toluene for 7 days at room temperature. 
After filtration, washing with toluene and drying over- 
night at 40 ~ C under vacuum, the insoluble fraction of  
the polymer was found equal to about 9%. This very 
low value shows that there is practically no permanent 
network and therefore the degree of  cross-linking of 
EVA is small. 

The fibres used in this study were high-strength 
PAN-based carbon fibres having received a surface 
treatment through electrolytic oxidation [12] in order 
to strongly increase the adhesion at the fibre-matrix 
interface. Their mechanical properties were determined 
on monofilaments at different gauge lengths varying 
from about 5 to 70 mm on the Instron tensile machine 
at a cross-head speed of  0.5mm min -~. Their elastic 
modulus was found equal to 240 _+ 15 GPa. Their 
tensile strength was dependent on the gauge length, l, 
and a linear relationship between In (o- 0 and In (l) was 
established 

In (~r) = - 0 . i 7  In (l) + 21.26 (13) 

This logarithmic dependence of ar with l allows us to 
extrapolate the value of o-r(/) at the critical length lc 
(and then to calculate both :m~x and : by Equations 4 
and 11). lc is usually too small, ranging from about 0.3 
to 3mm, to perform experimental measurements of  
individual fibre strengths. 

For  the fragmentation test, single-fibre composites 
were prepared by pouring the epoxy resin into a special 
mould holding ten carbon fibres in the centre of the 
sheet and then curing the composite as above. For 
EVA matrix, two sheets (1 mm thick) were previously 
obtained as above and moulded again with the same 
experimental conditions on each side of a picture 
frame also supporting ten carbon fibres. Specimens 
according to ISO 1/2 standard were cut carefully so that 
the fibre axis coincided with the axis of  the composite 
as well as possible. Each sample was subjected, at a 
cross-head speed of 0.5 mm min-~ in the environmental 
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TABLE I Single-fibre composites for which results are taken 
into account in the present study 

Matrix Fibre Reference 

Unsaturated polyester 

Epoxy resin 

Epoxy resin 

Epoxy resin 

Epoxy resin 

Polyethylene 

Polyvinylchloride 

Ether block amide 
copolymers 

Polypropylene 

Polyurethane 

Glass [13] 

Glass [ 13] 

Substituted [6, 14] 
polydiacetylene 

Carbon [12, 15, 16] 

Graphite [17, 18] 

Glass [10, 11, 19] 

Glass [10, 11] 

Glass [20] 

Glass [21] 

Glass, carbon [11, 22] 

chamber of the testing machine, to a tensile strain 
greater than the fibre ultimate tensile strain, which was 
found equal to about 1.5%. After testing, the fibre in 
the composite was broken into a large number of 
fragments (20 to 50). Mean fibre fragment length, /, 
was determined using an optical microscope equipped 
with a micrometer eyepiece. According to Kelly and 
Tyson [1], the critical length, lo, is equal to 4/3 f 
because the length of broken fibre pieces should be 
distributed in the range Ic/2 to lc. 

A great number of results presented in this study 
come from a survey of the literature. Thus, the systems, 
for which accurate data are available, are given in 
Table I. It is shown that matrices are thermosetting or 
thermoplastic polymers as well as elastomers and that 
fibres are glass, carbon or organic fibres. For all these 
different cases, as well as for our own experiments, it 
appeared that the values of the term [(1 + Vm) In 
(2rm~d)] 1/2 in Equation 7 were always included between 

2 and 3, corresponding to 40 < 2rm/d < 300 and 
0.3 < Ym ~,~ 0.5. Therefore, the assumption concern- 
ing the coefficient k (Equation 8) and discussed in 
Section 2, is confirmed, k can be considered a constant 
with a mean value equal to 2.5. 

4. R e s u l t s  a n d  d i s c u s s i o n  
4.1. Effect of fibre-matrix adhesion on the 

critical length 
The effect of the adhesion on the critical length has 
been studied theoretically by Termonia [4] using finite 
element analysis. He assumed that this adhesion can 
be described by an "adhesion factor" equal to one 
when all the possible bonds at the fibre-matrix interface 
are effective. The adhesion factor decreases when 
bonds are broken to reach the zero value at zero level 
of adhesion. Termonia observed that a decrease of the 
fibre-matrix adhesion leads to an increase of the critical 
length, this increase being particularly rapid when the 
adhesion factor becomes less than about 0.3 (see Fig. 
6 in [4]). 

Two experimental studies concerning the effect of 
adhesion on the fibre-matrix interfacial shear strength 
using a fragmentation test have been performed 
recently. The first one by Simon and co-workers [10, 
11] concerns the adhesion between glass fibres and 
polyethylene. The glass fibres have been primarily 
submitted to different surface treatments (chemical 
etching treatment, silanes treatment, etc.). In Fig. 2 
the variation of the critical aspect ratio, lc/d, is plotted 
against the work of adhesion, Wa, determined by wett- 
ability techniques. In that case, because polyethylene 
is a non-polar material, only dispersive interactions 
are established between the fibre and the matrix. The 
curve obtained (Fig. 2) is qualitatively the same as that 
given by Termonia [4]. 
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Figure 2 lc/d plotted against work of adhesion, 
W~, for a glass fibre-polyethylene system [10, 11]. 
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Figure 3 l c/d plotted against specific interaction parameter, A, for a 
carbon fibre-epoxy resin system [12]. 

The second study concerns carbon fibre-epoxy resin 
systems [12]. As before, the characteristics of the matrix 
remained unchanged and the carbon fibres were surface 
treated by oxidation or sizing. In contrast with the 
previous study, both fibre and matrix are now polar 
materials and thus a specific interaction parameter, A, 
between these two constituents can be measured by 
means of inverse gas/solid chromatography technique 
[23]. This specific interaction parameter describes 

acid-base interactions [24] at the fibre-matrix interface. 
It appears also that the plot of lo/d against A (Fig. 3) 
has the same qualitative form as that obtained in the 
previous study (Fig. 2) and in Termonia's work. 

These results point out the great influence of  the 
fibre-matrix adhesion on the value of the critical 
length which can be divided by a factor equal to about 
two when an appropriate surface treatment is applied 
to the fibre. 

It is worth remembering now that in the theories of 
Cox [2] and Termonia [4] it is assumed that a perfect 
adhesion must exist between the fibre and the matrix 
to determine the magnitude of the stress transfer. 
Thus, for the continuation of this paper and particu- 
larly in the case of literature data concerning a given 
system, only the smallest available values of lc corre- 
sponding to the highest values of interfacial shear 
strength are taken into account. Moreover, it will be 
assumed that in each case the best level of fibre-matrix 
adhesion is reached. It is also the reason why oxidized 
carbon fibres are used in our own experiments, con- 
sidering that the oxidation treatment is efficient 
enough to create a very good adhesion between the 
fibres and the epoxy resin or the EVA polymer. 

4.2 .  R e l a t i o n s h i p  b e t w e e n  Ic/d a n d  El~Era 
In order to determine which theoretical analysis, that 
of Cox (Equation 8) or that one of Termonia (Equation 
9), is the most accurate to describe the stress transfer 
from the matrix to the fibre in a single-fibre composite, 
the variation of Ic/d with the ratio Er/Em, fibre to 
matrix modulus in logarithmic scales, is shown in 
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Figure 4 lc/d plotted against Ef/E m ill logarithmic scales for different systems: (I)  present results, (x )  results from the literature (numbers 
near the points correspond to the references); ( ) theoretical predictions, ( - - - )  experimental fittings. 
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Figure 5 Influence of the temperature on the variation of lJd with Ef/E m in logarithmic scales for different systems: (O) glass fibre- 
unsaturated polyester [13], (x) glass fibre-epoxy resin [13], (I) carbon fibre-epoxy resin, (O) carbon fibre-EVA, ( ) theoretical 
predictions, ( - - - )  experimental fittings (see Fig. 4). (Numbers near the points correspond to the temperatures in ~ C). 

Fig. 4, where the theoretical straight lines correspond- 
ing to Cox and Termonia's models are also drawn. 

It immediately appears that only four or five experi- 
mental points agree with Termonia's analysis, especi- 
ally for low values of El~Era. On the contrary, all the 
other results (27 experimental values) are located on 
straight lines which are parallel to that of Cox. A first 
set of values, corresponding to thermosetting and 
thermoplastic matrices only, defines a linear relation- 
ship between log (lc/d) and log (Ef/Em) having a slope 
equal to about 0.5 in agreement with Equation 8 (the 
best fit gives a slope equal to 0.44 4- 0.04). Neverthe- 
less, all these values are located above Cox's theoreti- 
cal line and it is possible to write 

lo/d "~ 4.7(Er/Em) '/2 (14) 

This equation has, of course, the same mathematical 
form as Equation 8. However, the value of the coef- 
ficient k, experimentally equal to 4.7 in this case, is 
higher than the predicted one, k ~ 2.5, as defined in 
Section 3. One of the major assumptions made by Cox 
is that a perfect adhesion exists between the fibre and 
the matrix. Experimentally, it is very difficult to check 
this assumption. Moreover, as previously observed, 
the ratio l~/d greatly increases when the fibre-matrix 
adhesion is decreased. Therefore, a small lack of adhe- 
sion can explain this experimental value of k. Such a 
phenomenon could also be put forward for the few 
points which are in agreement with Termonia's rela- 
tionship. 

A second set of experimental values, corresponding 
to matrices exhibiting a viscoelastic behaviour (poly- 
urethane and EVA), again defines a linear relationship 
also having a slope of about 0.5 (best fit 0.58 +_ 0.08), 
but this straight line is now located below that of Cox, 
because the coefficient k is found equal to about 0.65, 
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according to 

lc/d ~ 0.65(Ef/Em) '/2 (15) 

Remembering that in order to correlate Ic/d with 
Er/Em it has been assumed that 1//~ -~ 1c/2, Equations 
14 and 15 lead, in fact, to the following equalities: 

for thermosetting-thermoplastic materials 1//3 _~ 
0.5 t j 2  

for elastomeric materials 1/[1 ~- 3.8 lc/2. 
Finally, whatever the nature of the fibres, it seems that 
the stress transfer from an elastomeric matrix to these 
fibres is far better than from a thermosetting or a 
thermoplastic matrix in all cases. For a given value of 
the ratio Er/Em, the mean value of lr is about seven 
times smaller for an elastomeric material than for 
another matrix. It is concluded that the nature of the 
matrix plays an unexpected major role in the process 
of stress transfer through the interface. Nevertheless, 
for the greater part of results, as stated by Cox, the 
stress concentration near fibre ends in a single-fibre 
composite can be neglected. 

Three fundamental phenomena can be invoked in 
order to explain the results in the case of elastomeric 
materials: 

(i) a frictional effect due to the transverse contrac- 
tion of the incompressible elastomeric matrix (Vm= 
0.5). At high applied strain, this effect can be respon- 
sible for an important additional stress acting on the 
fibre and then reducing its critical length; 

(ii) a viscoelastic effect similar to that generally 
observed in several adhesion measurements and studied 
previously [25, 26]. In that case, it is probable that the 
stress distribution along the fibre is more homogene- 
ous than for a pure elastic matrix; 

(iii) in the case of elastomeric matrices, the existence 
of an interphase layer between the fibre surface and 
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Figure 6 (i)  Log (Era) and (O) lc/dplotted 
against temperature for the carbon fibre- 
EVA system. 

the matrix. In this zone around the fibre, it can be 
considered that either the molecular packing density 
of the elastomer or the motion of polymer chains are 
quite different than those of the bulk matrix material. 
Therefore, it is conceivable that the elastic modulus of 
this layer is higher than that of the bulk matrix. Of 
course, for the fragmentation test, the elastic modulus 
of this interphase layer must be taken into account 
instead of that of the bulk material. 

A few experiments have been performed in order to 
check the effect of the frictional force. The critical 
length of a carbon fibre embedded in EVA elastomer 
was determined at different levels of external strain at 
20 ~ C. It appeared that when the applied strain became 
equal to about three to four times the tensile ultimate 
strain of the fibre, the critical length of this fibre 
reached a minimum value which remained unaffected 
by extra strain. Therefore, it can be concluded that the 
frictional effect, although it actually exists, is totally 
uneffective to reduce the critical length of a fibre in 
elastomeric matrices, even at high values of external 
applied strain (50 to 100%). 

This result allows us to emphasize the significance 
of the other phenomena listed above, i.e., the visco- 
elastic behaviour of the matrix and the existence of an 
interphase layer. Such effects are highly dependent on 
the temperature at which experimental measurements 
are performed. Consequently, in the next section, the 
temperature dependence of the critical length for our 
fibre-matrix systems is discussed, particularly near the 
glass transition temperature of the matrix. 

4.3. Temperature d e p e n d e n c e  of I c /d  
To our knowledge, only one study (Ohsawa et al. [13]) 
has been devoted to the temperature dependence of 
critical fibre length measured by the fragmentation 
test. The authors have determined the variation of 
both elastic modulus of the matrix, Em, and critical 
fibre length, Io, as a function of the temperature, T, 
varying from 20 to about 120 ~ C, for glass fibre-rein- 
forced epoxy resin or unsaturated polyester. The glass 
transition temperature, T~, was found to be about 60 

and 40~ for epoxy resin and polyester, respectively. 
They found that the ratio Ic/d increases greatly but 
continuously with temperature, while the curves Em 
against T dropped near to the Tg value of each matrix. 
Nevertheless, by plotting log ( lJd)  against log (ERIE,) 
(Fig. 5) for both systems studied by Ohsawa et al. [13] 
it appears that, whatever the temperature, below or 
above Tg, the experimental results agree rather well 
with the linear relationship obtained previously 
(Equation 12) and corresponding to the thermosetting 
and thermoplastic matrices. For low values of T, a few 
points are located near Termonia's relationship. 

Therefore, for those kinds of systems, it seems that 
even at temperatures much higher than Tg it is difficult 
or impossible to obtain experimental values which 
agree with the straight line corresponding to elasto- 
meric matrices. It is worth noting that materials used 
by Ohsawa et al. [13], namely epoxy and polyester 
resins, are highly cross-linked polymers. This fact 
allows us to think that certainly the mobility of polymer 
chains is a major factor influencing the critical fibre 
length in single-fibre composites. 

In Fig. 5, it can also be observed that similar results 
were obtained for our carbon fibre-epoxy resin system 
(Tg = 140~ at 20 and 180~ Nevertheless, the 
second value is intermediate between the two straight 
lines defined above and agrees quite well with Cox's 
theory. It seems that at higher temperatures, it could 
be possible to reach the straight line of elastomers; 
however, beyond 180~ a thermal degradation of 
epoxy resin occurs and it is therefore impossible to 
perform reproducible experiments. 

For the carbon fibre-EVA system (Tg = - 3 6  ~ C) 
studied in this paper, the results are quite different. 
Fig. 6 shows simultaneously the variations of both Em 
and lc/d as a function of temperature, T. Contrary to 
the results of Ohsawa e t al. [13], both variations present 
an inflexion point near the EVA Tg value. However, it 
appears in Fig. 5 that for T lower than Tg, the values 
of log (l~/d) against log (El~Era) agree rather well 
with the first straight line (thermosetting and thermo- 
plastic materials) and for T much higher than Tg, the 
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Figure 7 Schematic variation of log (Em /T) with absolute tempera- 
ture, T, and estimation of the elastic modulus E*, of the interphase 
layer. 

experimental results are located in the vicinity of the 
second straight line (elastomeric materials). In the 
intermediate region, it seems that the values of lc/d are 
kept almost constant whatever the temperature. 

By gel content and differential scanning calorimetry 
(DSC) measurements, we have noticed that EVA is a 
polymer with a low degree of cross-linking and crystal- 
linity so that, at temperatures higher than its Tg, it can 
be considered as an elastomer, although it is often 
known as intermediate between a thermoplastic poly- 
mer and an elastomer [27, 28]. Therefore; at these 
temperatures, the mobility of the polymer chains is 
high, leading to a marked viscoelastic behaviour of the 
matrix. Finally, it clearly appears that the polymer 
chain mobility is a major factor determining the level 
of stress transfer at the fibre-matrix interface in fibre- 
reinforced composites. 

If  it is clear that for both cases (below and above 
Tg), variations of (/c/d) against (Er/Em) in logarithmic 
scales are unique straight lines according to Equation 
8, however, it is not easy to give an explanation for the 
values of the coefficient k in Equations 14 and 15. 

Finally, Equation 8 has to be corrected as follows 

- ~ k o ( E r )  '/2 (16) 
lc 

where k 0 is equal to the theoretical mean value of the 
term [(1 + %) in (2rm/d)] 1/2 determined in Section 3, 
i.e. k0 ~- 2.5, and e is a new coefficient which can take 
only two discrete values, 0~ther and %,st, corresponding, 
respectively, to thermosetting or thermoplastic poly- 
mers and elastomers. From Equations 14 and 15, we 
obtain the following experimental values: 0~ther " ~  2 
and 0~elas t ' ~  1/4. These values of e can be related to the 
mobility of the polymer chains but it would be difficult 
to give a more precise physical meaning. 

Let us assume now that in the case of elastomeric 
materials, an interphase layer exists between the fibre 
surface and the matrix. In this layer, a different mol- 
ecular packing density of the elastomer than that of 
the bulk material can be considered and the motion of 
polymer chains is certainly restricted by the presence 
of the fibre. For highly cross-linked polymers and 
thermoplastics or elastomers in their glassy state, this 
phenomenon can be neglected. To a first approxi- 
mation it can be assumed that the mechanical behav- 
iour of this layer is equivalent to that of the elastomer 
in its glassy state, even at temperatures much higher 
than Tg. 

In order to estimate the elastic modulus E* of this 
interphase layer, we have checked for EVA elastomer 
that an absolute temperature dependence of Em/T can 
be established, according to the work of Ilavsky and 
Hasa [29]. Therefore, as shown in Fig. 7, it is possible 
to determine E* of the interphase layer by extrapolat- 
ing at temperatures beyond Tg, the linear relationship 
observed between log (Era~T) and T at temperatures 
lower than Tg. Calculated values of E* are given in 
Table II. 
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Figure 9 Interfacial shear stresses z and Zr.ax plotted 
against temperature for carbon fibre-EVA system. 

Taking into account the values of E* instead of Em 
for the EVA elastomer in the rubbery region, it 
immediately appears in Fig. 8 that all the values of Io/d 
against Ef/Em in logarithmic scales define a straight 
line, having a slope of about 0.5, quite close to the line 
corresponding to the thermoplastic and thermosetting 
matrices. The fact that the former is located above the 
latter can be explained by a lack of fibre-matrix adhe- 
sion as previously discussed. 

Finally, the assumption of the existence of an inter- 
phase layer between the fibre surface and the elasto- 
meric matrix could explain rather well the results of 
stress transfer in single fibre-elastomer composites. 

For this carbon fibre-EVA system, it is now interest- 
ing to calculate according to Equations 4 and 11 the 
values of the maximum shear strength, z . . . .  and the 
mean shear strength, T, at the interface, respectively. 
The relationships between both shear strengths and 

T A B L E  II Compar ison between measured elastic modulus  
(Era) of  bulk elastomer and calculated elastic modulus  (E*) of  the 
interphase layer, in the rubbery region of  EVA matrix 

T (~ E m (MPa) E* (MPa) 

- 20 30.5 524 
0 12.9 307 

+ 20 6.6 179 
+ 40 1.7 104 

the temperature are shown in Fig. 9. It can be observed 
that rmax and T decrease rapidly for temperatures lower 
than the Tg of the matrix, while beyond T equal to 
about -20~  both strengths decrease less steeply 
with increasing temperature. These types of variation 
are quite different from the linear decrease observed 
elsewhere [13] for systems involving cross-linked 
matrices. 

The fact that shear strengths at the interface decrease 
with increasing temperature (as shown in Fig. 9) is 
certainly not brought about either by a decrease in 
bond strength at the fibre-matrix interface or by a 
thermal stress produced by the difference in thermal 
expansion coefficient between fibre and resin. It can, 
however, be explained by a decrease in shear strength 
of the matrix with increasing temperature [13]. How- 
ever, observations under a microscope of the breaking 
point of a fibre in the samples submitted to the frag- 
mentation test at T > Tg do not reveal cracks in the 
matrix. Therefore, it can also be assumed that second- 
ary bonds existing at the fibre-matrix interface undergo 
relaxation with increasing temperature and conse- 
quently, the shear strengths at the interface decrease. 
Nevertheless, the shape of the variations of Tma x and v 
against T (Fig. 9) (this shape being greatly dependent 
on the glass transition temperature of the matrix), is 
evidence for the major influence of the shear strength 
of the matrix. 
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5. Conclusion 
In this study it was shown, from our results and 
numerous others available in the literature, that the 
classical shear lag theory proposed by Cox [2], almost 
40 years ago, can still interpret very well the stress 
transfer at the fibre-matrix interface in fibre-reinforced 
polymers. In particular, in single-fibre composite as 
stated by Cox, the stress concentration near fibre ends 
can be neglected in contradiction with recent theoretical 
analysis by means of finite element techniques [4]. 

First, the effect of fibre-matrix adhesion on the 
critical length was studied. It was observed as expected 
that the critical length increases with decreasing adhe- 
sion. Secondly, considering a perfect bond at the 
fibre-matrix interface, it was shown that the critical 
fibre aspect ratio (lc/d) is linearly related to the square 
root of the ratio fibre to matrix modulus in agreement 
with Cox's theory, whatever the nature of both fibre 
and matrix. Nevertheless, two linear relationships 
were established: the first corresponds to the thermo- 
setting and thermoplastic matrices and the second to 
the elastomeric matrices, both straight lines having 
slopes different from that predicted by the theory. 
Therefore, it is concluded that the mobility of the 
polymer chains can be taken as responsible for this 
experimentally observed behaviour. On the one hand, 
for highly cross-linked matrix (epoxy resin) it was 
observed that it is difficult to cross from the first 
relationship to the other one. On the other hand, for 
a matrix (EVA) having a low degree of cross-linking, 
it has been shown that the variation of the critical fibre 
aspect ratio for temperatures below the glass transition 
temperature of the matrix agrees with the first relation- 
ship, whereas this variation agrees with the second 
relationship at temperatures above Tg. Nevertheless, 
the assumption of the existence of an interphase layer 
between the fibre surface and the elastomeric matrix 
could explain these particular results of stress transfer 
in single fibre-elastomer composites. In this case, it is 
assumed that, whatever the temperature, the elastic 
modulus of the interphase layer is equal to that of the 
elastomer in its glassy state. 
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